" High value-added chemicals and BIoreSIns from alGae biorefineries produced from CO2 provided by industrial emissions "

NEWS

In this section, you can access to the latest technical information related to the BISIGODOS project topic.

Photosynthesis Discovery Could Lead to Design of More Efficient Artificial Solar Cells

A natural process that occurs during photosynthesis could lead to the design of more efficient artificial solar cells, according to researchers at Georgia State University.

During photosynthesis, plants and other organisms, such as algae and cyanobacteria, convert solar energy into chemical energy that can later be used as fuel for activities. In plants, light energy from the sun causes an electron to rapidly move across the cell membrane. In artificial solar cells, the electron often returns to its starting point and the captured solar energy is lost. In plants, the electron virtually never returns to its starting point, and this is why solar energy capture in plants is so efficient. A process called inverted-region electron transfer could contribute to inhibiting this “back electron transfer.”

This study’s findings, published in the journal Proceedings of the National Academy of Sciences, provide quantitative evidence that inverted-region electron transfer is responsible for the very high efficiency associated with solar energy conversion in photosynthesis.

Theoretical work on this phenomenon won Dr. Rudolph Marcus the 1992 Nobel Prize in Chemistry, but until now the mechanism has not been demonstrated in natural photosynthetic systems. The researchers studied photosynthetic reaction centers from the freshwater cyanobacterium species Synechocystis, which has the same photosynthetic machinery as plants.

Continue reading at Georgia State University

Image via Pixabay

Tweet

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico
C/ Gustave Eiffel, 4 (Valčncia Parc Tecnolňgic) 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
proyectos@aimplas.es



This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [613680].

AIMPLAS - Instituto Tecnológico del Plástico | Powered by: SoftVT